Программа для расчета отопительной системы
Существуют два метода, чтобы рассчитать водяной теплый пол, это – наглядный способ и онлайн калькулятор. При первом способе для вычисления используется миллиметровая бумага, карандаш и ластик. На бумаге рисуется площадь помещения, со всеми предварительными данными и при помощи формул производится рассчитать. Такой метод более точный, но он отнимает много свободного времени и требует особых навыков. По этому, для более быстрого подсчета теплых полов, применяется программа для расчета теплого пола – онлайн калькулятор.
С помощью такой программы можно с легкостью, всего за несколько секунд получить всю интересующую информацию, базисные характеристики и итог подсчета теплого пола. Суть этого способа, заключается в том, что все данные вносят в калькулятор онлайн, с необходимыми размерами и выборами, которые в нем уже установлены. Затем при нажатии на итог, вычислительная техника выдает результаты.
Окно программы калькулятора
Когда будут готовы все итоги и можно будет приступить к установке водяного теплого пола, следует ознакомиться с несколькими нюансами.
Общие закономерности
Первое, что нужно сделать — составить план помещения. Рисовать его лучше на миллиметровой бумаге придерживаясь масштаба. А что на него наносить — мы сейчас разберёмся.
Реальная площадь укладки
А она почти всегда будет отличаться от общих размеров помещения. Во-первых, следует вычесть площадь, которую занимает стационарная мебель, под неё тёплый пол укладывать нельзя. Во-вторых, должно оставаться расстояние между стеной и ближайшей к ней трубой. В среднем оно составляет около 20 см.
Для наглядности посчитаем её на примере. Допустим, что размер помещения, в котором будет монтироваться тёплый пол равен м2. Из него вычитаем расстояние от труб до стен (0,2 м): м2.
Расстояние между трубами и длина контура
Зависит от необходимой температуры, способа укладки и диаметра самих труб. В основном это расстояние колеблется от 10 до 30 см. Соответственно в зонах с большими теплопотерями оно будет уменьшаться, а вдали от окон и наружных стен увеличиваться.
При среднем расстоянии 20–30 см, на один квадратный метр понадобится около 5 м трубы. Чтобы выполнить расчёт трубы для тёплого водяного пола по всему помещению достаточно этот показатель умножить на реальную площадь укладки.
Но, при этом следует учесть, что общая длина трубы одного контура не может превышать 120 м. Если площадь помещения требует больше — придётся делать несколько отдельных контуров. Разница их длины должна находиться в пределах 15 м. Для равномерного прогрева всех контуров нужно устанавливать коллектор с возможностью регулировки расхода тепла.
Контур с регулировкой тепла
И ещё один важный момент. Перед укладкой тёплого пола необходимо позаботиться о качественной теплоизоляции перекрытия под ним. В противном случае тепло будет расходоваться не рационально, что приведёт к значительному снижению эффективности всей системы и к повышению затрат на прогрев теплоносителя.
Анализ приведённых данных поможет более детально представить принцип, по которому проводится расчёт тёплого водяного пола и собрать всю необходимую для такого вычисления информацию. А как её применить в дальнейшем — произвести подсчёт с помощью онлайн-калькулятора или доверить этот процесс специалистам — решать вам.
Видео о том, как рассчитать тёплый водяной пол:
https://youtube.com/watch?v=-JSEBUJGkZs
Как рассчитать электрический теплый пол
Методика расчета аналогична тому, что написано про водяной пол. Необходимо знать теплопотери и способ использования подогрева пола, мощность одного метра греющего элемента. В данном случае все несколько проще, потому что электрические материалы для нагрева пола имеют конкретную цифру, которой производители обозначают максимальную теплоотдачу. Больше заявленной цифры они выдать не в состоянии. Потому расчет теплого пола с электрическим подогревом более прост и понятен. Тем не менее, остается достаточное количество переменных величин. Это толщина стяжки, ее теплопроводность, теплопроводность финишного напольного покрытия. Их тоже надо учитывать.
Расчет зависит от мощности обогревателя на квадратный метр
Эффективная площадь обогрева
Расчет теплого пола с электроподогревом начинают с определения эффективной зоны обогрева и ее площади. Большая часть нагревательных элементов не переносит перегрева (резистивные кабели, маты из резистивных кабелей, пленочные нагреватели и инфракрасные маты). Исключение — саморегулирующиеся греющие кабели, но они стоят дорого, поэтому их применяют редко. Хотя, есть и сами кабели и маты из них.
Еще раз: электрические греющие элементы пола укладывают только на той площади, где не будет стоять мебель и/или сантехника, лежать ковры и т.д. То есть, электрический теплый пол кладут там, где будет постоянный и определенный расход тепла.
Чтобы рассчитать кабель для теплого пола надо сначала определиться с площадью, на которой он будет укладываться
Перед началом расчета предполагаемые места под мебель/сантехнику/ковры очерчиваем, считаем оставшуюся площадь. Это и будет эффективная площадь обогрева. Ее дальше используем в расчетах.
Как рассчитать метраж греющего кабеля для пола
Методика расчета основывается на том количестве тепла, которое надо восполнить (теплопотери) и эффективной площади отопления. Теплопотери делим на эффективную площадь обогрева. Получаем требуемую тепловую мощность, которую мы должны получить с квадратного метра площади с уложенным нагревательным элементом.
Например, площадь комнаты 16 квадратов, на 4 квадратах будет располагаться мебель. Обогреваемая зона — 16 кв. м — 4 кв. м = 12 кв. м. Теплопотери помещения — 1100 Вт. Узнаем сколько надо мощности с одного метра: 1100 Вт / 12 м² = 92 Вт/м².
Расчет греющего кабеля по площади помещения и мощности метра
Далее смотрим мощность кабелей для обогрева пола. Например, мощность одного метра — 30 Вт. Чтобы получить 92 Вт на квадратном метре, надо уложить чуть больше чем три метра кабеля. Вполне реальная задача. При разработке схемы, помните, что лучше, чтобы для стяжки высотой 3-4 см расстояние между проводами не превышало 25 см. Иначе пол будет иметь ярко выраженные «полосы» — чередующиеся зоны тепла и холода.
Есть и другой способ. Купить готовый набор кабеля определенной мощности. Ищите подходящую мощность и площадь укладки. Имеете все в комплекте.
Расчет теплого пола с кабельными матами
Суть расчета не изменяется. Также нужны теплопотери и эффективная площадь укладки. Это тот же кабель, но предварительно закрепленный на полимерной сетке. Такой обогревательный элемент проще в укладке. Применяется чаще всего под плитку. Просто раскатывается на подготовленное основание, сверху кладется плитка на специальный клей.
Греющие маты продаются обычно в готовом к укладке виде
С полом такого типа все просто. Он продается кусками определенной мощности на определенную площадь. Всего-то и надо, что найти тот вариант, который вам подходит.
Рассчитаем пленочный теплый пол
Пленочный нагревательный элемент продают комплектами и на метры. Подбираете метраж и мощность так, чтобы он давал требуемое количество тепла. Полотнища пленки должны укладываться вплотную друг к другу. Это необходимо, чтобы избежать «полосатости» температур.
Теплый пол пленочный. Расчет очень прост: подбираем мощность и ширину так, чтобы давали они требуемое количество тепла
Ширина пленочного теплого пола — 30 см, 50 см, 80 см и 100 см. Вполне можно в одном помещении использовать разные по ширине
Важно чтобы нагревательные элементы не перегревались
Подходящие варианты комплектов теплого пола
— Внимание!!! Представленные в расчете комплекты греющего кабеля необходимы вам в количестве 3-х штук!
Список подходящих вариантов
(PDF)
- 1. Основание
- 2. Теплоизоляция
- 3. Фольга
- 4. Базовая стяжка
- 5. Монтажная лента
- 6. Нагревательный кабел
- 7. Температурный датчик в гофротрубке
- 8. Выравнивающая стяжка
- 9. Гидроизоляция (при необходимости)
- 10. Плиточный клей
- 11. Звукоизоляция
- 12. Напольное покрытие
- 13. Терморегулятор
Описание установки
Укладка кабеля в выравнивающую стяжку.
- Рекомендуется при толщине конструкции пола более 100 мм.
- Арматурная сетка должна быть уложена в слое базовой стяжки (> 6 см).
- Кабель монтируется на поверхности базовой стяжки после ее высыхания.
- Для фиксации кабеля на поверхности пола используйте монтажную ленту соответствующих длин, закрепленную на стяжке. Температурный датчик устанавливается между двумя витками кабеля в гофро-трубке.
- Толщина выравнивающей стяжки зависит от характеристик аккумуляции и материала покрытия пола.
- Для полов с керамической плиткой толщина стяжки должна быть больше, чем для деревянных, чтобы обеспечить равномерный прогрев поверхности.
- 1. Старый материал пола;
- 2. Грунтовка;
- 3. Нагревательный кабель;
- 4. Монтажный скотч;
- 5. Датчик температуры пола в гофротрубке;
- 6. Выравнивающий раствор (плиточный клей);
- 7. Выравнивающий раствор (при необходимости);
- 8. Напольное покрытие;
- 9. Терморегулятор;
Описание установки
Отопление тонких полов.
- Нагревательные кабели могут быть установлены на старом напольном покрытии.
- На поверхности пола кабель фиксируется с помощью монтажного скотча.
- Температурный датчик устанавливается в гофро-трубке посередине между двумя витками кабеля.
- Кабель равномерно и полностью закрывается выравнивающим раствором или клеем, после высыхания которого может быть смонтировано напольное покрытие.
- 1. Выровненный черновой пол
- 2. Теплоизоляция (ЭППС, Изолон)
- 3. Нагревательная пленка
- 4. Заземляющий алюминиевый экран-пленка
- 5. Ламинат или паркетная доска
- 6. Датчик температуры пола
- 7. Термостат
Описание установки
Укладка пленки под ламинат или паркетную доску.
- Нагревательные пленки должны располагаться так, чтобы они не перекрывались, даже частично, декоративными элементами, плинтусами и другими частями пола. Нагревательные панели, закрытые надстройками могут перегреться.
- Нагревательные пленки следует располагать по длине помещения, в этом случае будет больше цельных полос и меньше точек подключения монтажных проводов.
- Если в полу проходит электропроводка, она должна находиться как минимум в 50 мм от нагревательных панелей и отделяться от нее или структур пола теплоизолирующим материалом, заполняющим это пространство.
- Между нагревательными панелями и источниками тепла должно быть выдержано расстояние не менее 200 мм. К источникам тепла можно отнести горячие трубы, камины, духовки и т.д.
- Нагревательная пленка разрезается вдоль нагревательных полос по пунктирным линиям отреза. Запрещается разрезать пленку по иным линиям!
- Температурный датчик устанавливается в гофро-трубке посередине между двумя пленками.
- Нагревательная пленка крепится при помощи армированного скотча.
- 1. Выровненный черновой пол
- 2. Теплоизоляция (ЭППС, Изолон)
- 3. Нагревательная пленка
- 4. Заземляющий алюминиевый экран-пленка
- 5. Датчик температуры пола
- 6. Листы фанеры или ГВЛ
- 7. Ковролин
- 8. Линолиум
Описание установки
Укладка пленки под линолеум и ковролин.
- Нагревательные пленки должны располагаться так, чтобы они не перекрывались, даже частично, декоративными элементами, плинтусами и другими частями пола. Нагревательные панели, закрытые надстройками могут перегреться.
- Нагревательные пленки следует располагать по длине помещения, в этом случае будет больше цельных полос и меньше точек подключения монтажных проводов.
- Если в полу проходит электропроводка, она должна находиться как минимум в 50 мм от нагревательных панелей и отделяться от нее или структур пола теплоизолирующим материалом, заполняющим это пространство.
- Между нагревательными панелями и источниками тепла должно быть выдержано расстояние не менее 200 мм. К источникам тепла можно отнести горячие трубы, камины, духовки и т.д.
- Нагревательная пленка разрезается вдоль нагревательных полос по пунктирным линиям отреза. Запрещается разрезать пленку по иным линиям!
- Температурный датчик устанавливается в гофро-трубке посередине между двумя пленками.
- Нагревательная пленка крепится при помощи армированного скотча.
Как подбираются технические характеристики насоса
Для теплого пола применяются циркуляционные насосы, по своим техническим параметрам они в максимальной степени соответствуют выдвигаемым требованиям. Производительность насоса рассчитывается по формуле
Q = 0,86×Pн/(t°пр.т – t°обр.т).
В этой формуле Pн равняется максимальной мощности теплового контура в кВт; t°пр. т – начальная температура теплоносителя на входе в систему обогрева; t°обр. т – температура теплоносителя на выходе из системы обогрева пола. Если в квартире к одному насосу планируется подключать несколько контуров, то необходимо суммировать все значения по каждому из них.
Практический совет. Профессионалы рекомендуют для каждого помещения монтировать автономную систему теплого пола. Это позволит более точно регулировать параметры микроклимата с учетом назначения помещения и повысить надежность работы отопительной системы.
Формулы для расчета насоса
Разница температур на входе и выходе зависит от нескольких факторов:
- Длины контура. Чем больше длина, тем больше площадь должна обогреваться. Это значит, что потребуется много тепловой энергии, температура на входе и выходе будет значительно отличаться;
- Эффективности теплоизоляции. Если во время монтажа теплого пола грубо нарушались установленные правила, то непродуктивные тепловые потери будут составлять значительные показатели. Особенно это заметно на первом этаже, неправильная теплозащита приводит к тому, что большое количество тепловой энергии расходуется на обогрев почвы. Такие условия эксплуатации также становятся причиной чрезмерного расхода тепловой энергии и понижения эффективности системы, увеличивают нагрузку на насос;
- Климатической зоны расположения здания. Чем севернее проживает владелец квартиры, тем больше запас по мощности должна иметь система теплого пола, тем больше мощность у циркуляционного насоса. Производители рекомендуют приобретать насосы с 20–25% запасом по мощности.
Расчет и выбор насоса
Таблица характеристик для подбора насоса
Второй важный показатель насоса – напор потока. Напор должен быть достаточным для преодоления гидравлического сопротивления жидкости в системе. Гидросопротивление зависит от общей длины контура, его диаметра и скорости движения теплоносителя. Производители систем водяного пола должны указывать эти параметры, если подогрев делается самостоятельно, то для расчета величины напора насоса нужно пользоваться формулой
H= (П×L + ΣК) /(1000), где
- Н – требуемый напор насоса;
- П – гидросопротивление погонного метра контура, зависит от диаметра, материала изготовления труб и скорости движения жидкости;
- L – общая длина контура, включающая и надземные системы управления;
- К – рекомендованный коэффициент запаса мощности насоса.
После получения всех данных можно приступать к выбору конкретной модели.
Подбор насоса для теплого пола
Общие сведения по результатам расчетов
- О бщий тепловой поток – Кол-во выделяемого тепла в помещение. Если тепловой поток меньше тепловых потерь помещения, необходимы дополнительные источники тепла, например, такие как настенные радиаторы.
- Т епловой поток по направлению вверх – Кол-во выделяемого тепла в помещение с 1 квадратного метра площади по направлению вверх.
- Т епловой поток по направлению вниз – Кол-во “теряемого” тепла и не участвующего в обогреве помещения. Для уменьшения данного параметра необходимо выбирать максимально эффективную теплоизоляцию под трубами ТП* (*теплого пола).
- С уммарный удельный тепловой поток – Общее кол-во тепла, выделяемого системой ТП с 1 квадратного метра.
- С уммарный тепловой поток на погонный метр – Общее кол-во тепла, выделяемого системой ТП с 1 погонного метра трубы.
- С редняя температура теплоносителя – Средняя величина между расчетной температурой теплоносителя подающего трубопровода и расчетной температурой теплоносителя обратного трубопровода.
- М аксимальная температура пола – Максимальная температура поверхности пола по оси нагревательного элемента.
- М инимальная температура пола – Минимальная температура поверхности пола по оси между трубами ТП.
- С редняя температура пола – Слишком высокое значение данного параметра может быть дискомфортно для человека (нормируется СП 60.13330.2012). Для уменьшения данного параметра необходимо увеличить шаг труб, снизить температуру теплоносителя либо увеличить толщину слоев над трубами.
- Д лина трубы – Общая длина трубы ТП с учетом длины подводящей магистрали. При высоком значении данного параметра калькулятор рассчитает оптимальное кол-во петель и их длину.
- Т епловая нагрузка на трубу – Суммарное количество тепловой энергии, получаемое от источников тепловой энергии, равное сумме теплопотреблений приемников тепловой энергии и потерь в тепловых сетях в единицу времени.
- Р асход теплоносителя – Массовое кол-во теплоносителя предназначенного для подачи необходимого кол-ва тепла в помещение в единицу времени.
- С корость движения теплоносителя – Чем выше скорость движения теплоносителя, тем выше гидравлическое сопротивление трубопровода, а также уровень шума, создаваемого теплоносителем. Рекомендуемое значение от 0.15 до 1м/с. Данный параметр можно уменьшить за счет увеличения внутреннего диаметра трубы.
- Л инейные потери давления – Снижение напора по длине трубопровода, вызванного вязкостью жидкости и шероховатостью внутренних стенок трубы. Без учета местных потерь давления. Значение не должно превышать 20000Па. Можно уменьшить за счет увеличения внутреннего диаметра трубы.
- О бщий объем теплоносителя – Общее кол-во жидкости для заполнения внутреннего объема труб системы ТП.
Калькулятор работает в тестовом режиме. Дата добавления калькулятора 11.03.2018
Активные позиции в монтаже основательной системы сегодня занимают водяные теплые полы
В виду своих явных преимуществ, все больше застройщиков обращают внимание на эту систему. Прежде, чем приступить к монтажу, нужно сделать грамотный расчет теплого пола
Этому и будет посвящен данный материал.
Напольные покрытия
Виды финишного напольного покрытия для теплых полов: наливная поверхность, линолеум, ламинат или паркет, кафель, керамическая и метлахская плитка, мрамор, гранит, базальт и керамогранит.
Деревянному напольному покрытию противопоказана постоянная влажность в помещении, поэтому его не используют в ванных комнатах с теплыми полами.
Таблица 4. Теплопроводность напольных покрытий:
Тип материала | Толщина слоя δ, м | Плотность γ, кг/м³ | Коэффициент теплопроводности λ, Вт/(м °∁) |
Линолеум утепленный | 0,007 | 1600 | 0,29 |
Плитка кафельная, метлахская, керамическая | 0,015 | 1800 ÷ 2400 | 1,05 |
Ламинат | 0,008 | 850 | 0,1 |
Паркетная доска | 0,015 ÷ 0,025 | 680 | 0,15 |
Утеплитель (урса) | 0,18 | 200 | 0,041 |
Цементно-песчаная стяжка | 0,02 | 1800 | 0,76 |
Железобетонная плита | 0,2 | 2500 | 1,92 |
Устройство водяного теплого пола в бетонной стяжке с финальным покрытием кафельной плиткой
Функции, разновидности и принцип действия циркуляционных насосов
Для чего нужен циркуляционный насос (помпа)? Согласно принципу действия систем с принудительным циркуляцией, движение нагретой жидкости происходит благодаря избыточному давлению, создаваемому насосным оборудованием.
Соответственно, на помпу возлагается решение двух задач:
- Обеспечение высокой скорости движения теплоносителя;
- Создание избыточного давления, достаточного для преодоления гидравлического сопротивления, возникающего в элементах системы.
Первая является основной с точки зрения эффективности и экономичности отопления. Действительно, при высокой скорости движения теплоносителя разница его температур в подающем и обратном трубопроводах уменьшается – жидкость просто не успевает остывать. В результате:
- Даже при значительной длине магистралей обеспечивается равномерное распределение тепла в обслуживаемых помещениях;
- Для подогрева жидкости требуется меньший расход энергоресурсов (по сравнению с гравитационными системами экономия может составлять до 20-30 %);
- Источники тепла (котлы, нагреватели других типов) работают в щадящем режиме;
- Появляется возможность создания закрытых (герметичных) систем, в которых может быть использован теплоноситель с высокими показателями теплоемкости (например, антифриз, смесь или водный раствор гликолей и др.).
Владельцу такой системы ее проектирование, монтаж и эксплуатация обходятся значительно дешевле.
Устройство циркуляционного насоса для отопления включает несколько основных узлов и деталей:
- Рабочее колесо (крыльчатку), обеспечивающее перекачивание жидкости;
- Электродвигатель для привода рабочего колеса;
- Перекачивающей камеры с впускным и выпускным (подающим и напорным) патрубками, которые присоединяются к трубопроводам;
- Корпуса;
- Клеммной коробки для электрических подключений и установки регулирующих органов (в случае модификации устройства с регулировкой скорости).
Как это работает:
- В перекачивающую камеру через впускной патрубок поступает теплоноситель.
- Здесь он захватывается крыльчаткой, приводящейся во вращение электродвигателем.
- При повышенном давлении отправляется в выпускной патрубок, присоединенный (как и впускной) к магистрали отопительной системы.
Производители предлагают множество различных конструкций насосного оборудования. Большинство из них модно отнести к одному из двух классов:
- Устройства с «мокрым» ротором;
- Помпы с «сухим» ротором.
В первом крыльчатка, как правило, выполняется в едином блоке с ротором электродвигателя. В результате ротор оказывается погружен в перекачиваемую жидкость.
Основной особенностью конструкции второго типа является ротор, изолированный от крыльчатки и теплоносителя за счет торцевого уплотнения.
В варианте с «мокрым» ротором жидкость выполняет одновременно функции смазки и теплоотвода.
Каждое из решений имеет собственные достоинства и недостатки. В варианте с «мокрым» ротором жидкость выполняет одновременно функции смазки и теплоотвода. Это позволило получить компактные конструкции с минимальным уровнем рабочего шума. Именно такие насосы получили широкое распространение для бытовых приложений – ГВС и автономного отопления.
Вариант с «сухим» ротором отличается более высокими значениями КПД и максимальной мощности, что определило использование такого оборудования в системах, требующих высокой производительности, например, мини-котельных, осуществляющих теплоснабжение многоквартирных домов.
Проектируем водяной тёплый пол
Как было сказано выше – одним из основных показателей для проектирования греющей системы является плотность эффективного потока тепловой энергии, производимой 1 м2 ТП (g, Вт/м2) – удельная мощность теплого пола. Она должна полностью компенсировать теплопотери помещения – Q, Вт.
g=Q/F,
где F, м2 – полезная площадь пола, которая будет использована под отопление. Она принимается, как общая площадь помещения за вычетом мест, где будет установлена мебель, а также свободной зоны 20-30 см от стен и мебели.
Величина Q учитывает множество параметров, частично приведенных в предыдущем разделе. Для её точного вычисления можно пользоваться методикой предложенной в справочном пособии Е. Г. Малявиной «Теплопотери здания», требующей углубленного подхода. Однако на практике частнику проще будет принять некие усредненные величины теплопотерь типовых зданий. Например, комната 18 м2 с одной наружной стеной и окном, а также потолками до 3 м, будет иметь примерные теплопотери 1800 Вт. Данный показатель справедлив для расчета теплого пола в помещениях многоквартирного дома, построенного в умеренной климатической зоне. А вот для частного дома его уже придется увеличить в 1,2-1,5 раза. Также увеличиваются значения теплопотерь, если установлены большие окна, комната угловая, тонкие стены и т.д.
Удельная теплоотдача теплого пола должна находиться в определенных пределах. Ведь его перегрев приводит к дискомфорту жильцов, разрушению строительно-отделочных материалов. Так, максимальная температура поверхности напольного покрытия (tf, С) рекомендуется:
- + 29°С – для жилых помещений (спальни, гостиной, кабинета);
- + 33°С – для помещений с повышенной влажностью (санузла, кухни);
- + 35°С – для участков возле внешних стен.
Табличный подбор шага укладки трубопроводов
Зная плотность эффективного потока тепловой энергии (g, Вт/м2), тип используемого покрытия (его сопротивление теплопередаче – Rw, м2*ОС/ Вт или м2*К/Вт), рекомендуемую температуру поверхности пола для данного помещения (tf, С), а также градиент рабочих температур теплоносителя (tz/tp, С/С), можно по таблицам 1-3 подобрать шаг трубы (b, м).
Таблица 1.
Таблица 2.
Таблица 3.
Вычисляем количество и диаметр трубопроводов
Расчет длины трубы для теплого пола выполняем по формуле:
L=(F/M)*1,1+2*N, где
- L – искомая длина трубопровода, м;
- F – полезная площадь пола отапливаемого помещения, м2;
- b – шаг (частота прокладки) витков, м;
- N – расстояние от коллектора, расположенного на стене, до уровня пола, м;
- 1,1 – коэффициент запаса труб на повороты.
Расход трубы также можно прикинуть, воспользовавшись таблицей 4.
Таблица 4.
Шаг, мм | Расход трубы, м/м2 |
100 | 10 |
150 | 6,7 |
200 | 5 |
250 | 4 |
300 | 3,4 |
Профессиональный расчет теплого водяного пола также включает подбор внутреннего диаметра (D, м) трубопроводов. Он должен соответствовать целому ряду параметров таким, как гидравлическое сопротивление системы, техническим возможностям циркуляционного насоса, требуемым для прокачки объемам теплоносителя и другим. Тем не менее, практически для любой небольшой индивидуальной тепловой установки обогрева полов, можно смело брать, например, металлопластиковую трубу Ø 16 мм, у которой внутренний Ø 12 мм. При этом следует учитывать, что рекомендуемая длина отопительного контура в этом случае не должна превышать 100 м (максимум 120 м). Если же расчет трубы для теплого пола требует большего её метража, то тогда контур необходимо разбить на два и более.
Помимо металлопластика подойдут: медь, ПВХ, сшитый полиэтилен. Они обладают схожими гидравлическими параметрами, поэтому их диаметры подбираются аналогично.
Практические рекомендации выбора подложки под различные напольные покрытия
Профессиональные строители рекомендуют подбирать конкретный тип подложки с учетом многих существующих факторов, один из них – тип финишного полового покрытия. Рассмотрим несколько наиболее часто встречающихся вариантов.
- Финишное покрытие — керамическая плитка. Плитку следует класть на цементно-песчаную стяжку, это создает значительные дополнительные нагрузки на подложки. Рекомендуется выбирать материалы с высокими показателями несущей способности: экструдированный пенополистирол или плиты ОСП. В пенополистироле трубы отопительной системы можно прятать в специальных канавках – уменьшается общая высота отопительного пирога. Керамическая плитка отлично проводит тепло, не боится нагрева до высоких температур, по всем показателям считается оптимальным вариантом для полов с водяным обогревом.
- Финишное покрытие — ламинат. Имеет небольшой вес, под него можно применять любые виды подложек, в том числе и самые мягкие. Главное требование – максимальные показатели теплосбережения. Дело в том, что ламинат сам плохо проводит тепло, если теплосбережение будет неэффективным, то значительно возрастают потери энергии, водяной обогрев пола становится нерентабельным.
- Финишное покрытие — линолеум. Очень мягкий материал, укладывается на специальные гипсокартонные плиты с добавками для повышения прочности. Есть варианты монтажа на листовую фанеру или ОСП, но эти материалы плохо пропускают тепло от системы, что понижает коэффициент ее полезного действия. Гипс имеет большой вес, подложки должны иметь повышенные показатели физической прочности. Рекомендуются пробковые, пенопластовые или пенополистирольные.
Варианты использования в качестве финишного покрытия полов с подогревом натуральной доски или паркета рассматривать не стоит. Такие схемы обустройства водяного подогрева применять не рекомендуется, нет никакой отдачи, а проблем возникает много. Во время длительной эксплуатации при повышенных температурах натуральное дерево обязательно усохнет, на нем появятся трещины. В критических ситуациях потребуется их полная замена с демонтажем системы подогрева. Кроме того, натуральное дерево считается отличным теплоизолятором, соответственно, система обогрева будет работать сама на себя, на микроклимат влияние минимальное.
Подложки могут иметь стандартные канавки для прокладки труб отопительной системы или выступы (бобышки). Второй вариант считается универсальным, он ничем не ограничивает вид контура системы, во время монтажа можно выбирать любое положение с учетом геометрических особенностей помещения. Отдельные плиты собираются в прочную конструкцию по системе шип/паз, могут иметь дополнительные замки крепления. Для облегчения монтажа некоторые производители на внешней стороне подложек дают примерные схемы расположения отопительных труб.
Какую подложку лучше выбрать
Обзор характеристик разных видов подложек